Hang Clean vs. Clean from the Floor

The clean is one of the most discussed lifts in the strength and conditioning world. I have written countless articles about the clean, and I have an entire book dedicated to everything about the movement.

One of the statements you might hear floating around in several strength and conditioning circles is that hang cleans are easier to teach and just as effective as a full range of motion clean from the floor. Is that true? Well, I have to give everyone’s favorite answer: “it depends.” While we’re discussing this, I will also tackle the topic of clean pulls in relation to full cleans.

My goal is to arm you with the scientific facts, so you can better make a decision for your athletes. A coach must be armed with the basics of biomechanics, physics, anatomy, and physiology. This knowledge will help them discern the information they are going to receive from mentors and peers. I don’t want any of you to assume that just because one of your go-to coaches says something that the information is automatically true. If that’s the case, the industry will never get better. I don’t want any of the coaches I mentor to take everything I say as gold – just like Louie Simmons or Coach Joe Kenn don’t want their coaching followers to take everything they say as law. It’s simply the information we have extracted from our own experience and studies. Of course based on the results of our athletes, we are mainly doing things correctly. However, I believe strength and conditioning still has a way to go.

Benefits

Let’s get into it. First, we need to go over why strength and conditioning coaches choose to use the clean in their arsenal of exercises. Let’s take a look at the benefits of a clean:

  • Power= Force x Velocity – moving moderate loads at a high velocity through space
  • Rate of Force Development (RFD) – this comes with improved motor unit recruitment and improved rate coding (the speed of which the neuromuscular system recruits maximal motor units. We will dig deeper, so don’t worry.)
  • SAID Principle – Specific Adaptation to Imposed Demands
  • Develop proprioception – movement through space
  • Mobility

These are just a few, but I feel I have made a solid point. The clean is a lot of bang for your buck. We will look at each benefit and compare a few of the favorite versions of the clean with the full movement clean. The goal is to arm you with the knowledge necessary for choosing the proper tool for the job. That’s the main point really. All movements are simply tools in our tool boxes. Like any good builder or carpenter, we have to know which tool is good for the job.

THE POWER OF THE CLEAN

Travis Mash's guide to the mighty clean... the most valuable lift for Strength and Conditioning Coaches

Learn to understand the clean on a deep level so you can easily and confidently correct movement flaws, assess athletes, write programs, and coach them to athletic success.

Power = Force x Velocity

Let me make this as simple as possible. Force equals mass x acceleration. Louie Simmons has made it his life’s work to make sure we all know that. Let’s look at the relationship between force and velocity. First, the mass component of force is inversely proportional to velocity. That means when the mass goes up, the velocity goes down and vice versa. Acceleration is equally proportional to velocity, since acceleration is a measure in the change of velocity.

On the field of play, athletes are normally only charged with the duty of moving their own bodyweight as quickly as possible (unless they’re throwers or strength athletes). Velocity is superior in almost all athletics except for powerlifting and aerobic sports. Therefore, the velocity at which an athlete is moving a certain weight is crucial. This is where the clean from the floor is superior, and I will explain why.

Impulse is an equation in biomechanics that looks at the duration of time a force is applied. Bear with me as I explain because I promise to bring this back to a simple analogy. Here goes:

  • Impulse = Momentum
  • Impulse = Average Net Force x Unit of Time Applied or Impulse = Σ Δt
  • Momentum = Mass x Velocity
  • Therefore: Average Net Force x Unit of Time Applied = Mass x Velocity

Now I will bring it back to layman’s terms. The longer you apply a force, the increased duration of time will create more and more velocity. Once again, mass has an inverse relationship with velocity – meaning velocity decreases as mass increases. What’s the point to all of this?

Obviously with a hang clean or clean from the blocks you won’t be able to create as much velocity as with a clean from the floor. The athlete has more time to apply force to the initial pull from the floor, creating more velocity and momentum on the bar. If velocity is the main goal of your program or the specific block of programming, you might want to consider performing at least some cleans from the floor.

If power equals force x velocity, each athlete will create more power from the floor. I believe this to be important, but not necessarily the end-all. The clean is an expression of power, but doesn’t necessarily mean the expression of power gives an athlete the ability to produce more power on the field. Dr. Bryan Mann performed some pretty significant studies showing the squat to be more proportional to increases in power where the 40-yard dash and vertical leap are concerned. I have found in my own tracking of data that increases in strength with the back squat if kept steady with increases of power in the clean together equal maximal gains on the field of play.

Some might think that just doing clean pulls will be an alternative to get the same velocities as the clean from the floor. Not so fast! In my friend Coach Wil Fleming’s new book Velocity Based Training for Weightlifting, he explains some research that he performed with his athletes. He found that the clean pull was 15% slower in velocity than a full clean at the same weight (usually 88-90% of an athlete’s 1RM for the clean). He also found that the clean high pull was 10% slower. One consideration might be the hand release clean pull, which was only 3% slower.

The problem is in the brain. The brain realizes that deceleration is inevitable when there is no commitment to go under a barbell. Anecdotally most athletes will tell you weights that normally feel light will feel much heavier during clean pulls. I can attest to the same thing. This doesn’t mean that clean pulls are worthless. They are still important for developing strength in the different positions required to perform a clean. A clean deadlift is important to athletes for developing strength at the hip and isometric strength in the spinal extensors required for massive collisions. Are you getting the theme? It’s all about understanding the application of different exercises (the tools in the tool box).

Rate of Force Development

Now before some of you break down in tears because you only program hang cleans or cleans from blocks, let’s discuss a principle that probably favors your style of programming. Force is important, but the rate at which someone can apply a maximal or a high rate of force is more important in most athletic events. Velocity is important, but there is something more important to consider. How quickly can an athlete get to top velocity? That’s a look at acceleration, and once again brings us back to force. Now that I have confused the heck out of you, I will bring this back to simple terms.

Rate of force development is the rate at which the contractile elements can produce force, and is affected by rate coding, maximal motor unit recruiting, muscle fiber type, and attachments. The entire pulling phase of a clean is typically about one second on average. Obviously, the entire pulling phase from a hang clean or clean from the blocks is a much shorter time. That allows the athlete to work within time zones more applicable to their sport. For example, I want you to think about the position an athlete is in before a tackle, the load phase of a vertical leap, or joint angles in the start position of a sprint.

It’s important to practice motor unit recruitment in the same time zone as will be needed in a particular sport. A motor unit is motor neuron (nerve) and all the muscle fibers that it synapses (connects) to. The intended adaptation of strength training is maximal motor unit recruitment. The more motor units that are recruited lead to more force. However, rate coding is the speed at which the neuromuscular system recruits maximal motor units, which translates into maximal RFD. Improvements in this area come with time as those neuromuscular junctions (synapses) become stronger and more efficient with the frequency of signaling. Muscle fiber type plays a role in this as well, but I need to discuss the next point before diving into that.

Specific Adaptations of Imposed Demands (SAID Principle)

Simply put, your body will adapt specifically to the demands that one applies to the body. If you train fast, muscle fibers will adapt, causing a certain group of muscle fibers to mimic or conform to fast twitch fibers. With that being said, you can make an argument for both the full clean and the hang clean. The full clean allows for a faster velocity, recruiting fast twitch fibers and over time causing an adaptation of other hybrid type fibers to mimic more of the fast twitch fibers. (Watch Andy Galpin’s 55 Minute Physiology on this topic.)

This is why overspeed training has validity for jumps and sprints. However, hang cleans and cleans from the blocks are better for improving rate of force development in the specific time zones and specific angular displacements of the joints in use (hips, knees, and ankles). Also the hang clean is more specific to the vertical leap due to the counter movement, and the clean from the blocks is more specific to the joint angles of a start in a sprint.

Developing Proprioception

Proprioceptors are the nerves in the joints, muscles, and tendons that give feedback to the brain on joint, muscle, and tendon position and each of their rates of change. Basically this gives the brain feedback on where the body is in space at any given moment. The better the body gets at this process will allow the athlete to move through space more efficiently. That’s why most weightlifters are incredible athletes with the ability to do whatever they want with their bodies. If you’ve ever hung out with my athletes, you have watched them walk on their hands, perform backflips, and rep out muscle ups. You could make an argument that a clean involves more total movement, making the proprioceptors more efficient – but I believe both the hang clean and clean from the blocks are just fine for improving this neural pathway.

Mobility

This quality isn’t talked about enough. In the bottom position of a clean or hang clean, the athlete will be required to reach maximal range of motion at the hips, knees, and ankles. This range of motion is important for joint health because synovial fluid is one of the only ways that joints receive nourishment. Synovial fluid is only released during end ranges of motion, so a health joint needs to be able to move through the entire range.

When it comes to sprinting, the recovery leg has to be able to completely flex at the knee to allow for a shorter moment of inertia to experience maximal angular velocity at the hip joint. If you watch any amazing sprinter, you will see their heel right on their glutes during the recovery phase. This is my argument for including full range of motion cleans and squats in an athlete’s training even though quarter squats and power cleans might be more specific.

STRENGTH UNIVERSITY VIDEO CURRICULUM

THE PERFECT WAY TO GROW IN KNOWLEDGE DURING THIS TIME OF SOCIAL DISTANCING

It's finally here... Learn about technique, programming, assessment, and coaching from a master. For strength coaches and for athletes, these 53 videos (7 hours and 56 minutes of footage) will prepare you to understand the main lifts for maximum performance and safety. Get ready to learn...

There it is. The answer to the debates that float around popular strength and conditioning circles most of the time is going to be: “it depends.” This is why I vehemently despise absolutes. Assessment and application are the two traits that separate the top coaches from the posers. I want you young guys to arm yourselves with a massive arsenal of tools. I want all of you to have assessment tools that will allow you to coach and program in a way that will specifically answer the challenges those athletes face. I hope this article provided some science to aid in that application.

Strongman and Weightlifting with Alec Pagan – The Barbell Life 343

A few years ago I was coaching Alec Pagan as he competed in weightlifting.

But in record speed, he has flipped the script to go after the sport of Strongman… and he’s taking over.

On today’d podcast, we break down his journey – as well as what makes him so successful as a Strongman coach.

COACH MASH'S GUIDE TO HYBRID TRAINING

The Art of Combining:

Weightlifting - Powerlifting - Bodybuilding

Strongman - Functional Fitness - Endurance Cardio

Learn the art and science of how to train multiple disciplines simultaneously. Get stronger, faster, bigger...
and DO WHAT YOU WANT.

LISTEN IN TO TODAY’S PODCAST AS WE TALK ABOUT:

  • What makes his Strongman approach so different… and so successful
  • Flipping over the desk at Pan Ams
  • “The most annoying thing about international weightlifting is pretending your competitors aren’t cheating”
  • Double standards in men’s and women’s Strongman
  • Fixing lifters’ backs and the incredible “Frankenstein” clean
  • and more…

Rotational Power for Athletes

In this article I am going to try and explain rotational power in the simplest of terms.

Most articles from strength and conditioning experts are written in terms of linear force and power. Louie Simmons has made the force equation the most popular of all biomechanical equations: Force = Mass x Acceleration. Fly by night strength coaches use this equation (incorrectly most of the time) to explain everything, which is the main motivation for me to develop content explaining all the other elements of biomechanics that are also important.

Torque = Force x Moment Arm

A great starting point when discussing rotational biomechanics is to explain torque. Torque is the ability of a force to cause rotation on a lever.

Torque is the rotational cousin of the force equation. Torque is the driving force for human movement. Muscles in conjunction with bones, ligaments, and tendons are responsible for movement. Muscles shorten, causing the tendons (a tendon is a flexible but inelastic cord of strong fibrous collagen tissue attaching a muscle to a bone) to pull on its corresponding bone. This creates a rotational movement around a joint.

An example would be the quad tendon that crosses the knee becoming continuous with the patellar tendon attaching to the tibia. When the quadriceps shorten, they pull on the quadriceps tendon, causing the patellar tendon to pull on the tibia producing knee extension. All locomotion is created by torque at the corresponding joints.

So even if you are in a sport like weightlifting or powerlifting which are linear in nature, you still have to understand torque and the elements of rotational power. Let’s take a look at the two components of torque: force and moment arm.

Moment Arm: The moment arm of a force system is the perpendicular distance from an axis or rotation to the line of action of a force.

Force: Torque is dependent on the amount of force, angle of application of force, and of course the moment arm.

FORGET OPINIONS. HERE'S THE SCIENCE ON PULLING.

Master Technique and Programming for the Conventional Deadlift, Sumo Deadlift, and Clean Pull

After combing through the research and interviewing the experts, the result is a guide that will refine your technique and boost your pull in a safe and effective manner.

We are going to go over several scenarios where rotational power is important. Moving forward, it’s important all of you understand there are a few biomechanical terms that must always be considered in regards to rotational power. Let’s look at them up front, so you will understand the rest of the article more easily:

Length and size of Moment Arm or Moment of Inertia: When it comes to overcoming a resistance, the length from the force to the joint trying to overcome the force is proportional in regards to difficulty. The farther away = more difficult to overcome.

However, when it comes to producing torque, a longer moment arm produces a larger rotational force aka torque. The farther down the tibia that the patellar tendon inserts will proportionally create a greater torque making it easier to overcome an external force. Another example is a longer bat will produce a greater torque when striking a baseball.

Moment of Inertia = 𝝨m*r²: Simply put the moment of inertia arm being rotated during rotational power. In baseball it is the bat and the arm combined. When throwing a punch, it is your arm. During sprinting, it is your leg rotating at the hip. You get it.

With moment of inertia, you have to consider the overall weight aka the mass, but as you can see the length is even more important. I know that because it is squared. We will go over this a bit more – especially in the sprint recovery section. The technique in various sports will take moment of inertia into consideration in regards to increasing and decreasing angular velocity.

Relationship between Impulse and Momentum:
Σ Δt = I* Δω
Σ Δt = I*(ω f − ω i)

impulse = change in momentum
Where
Σ = average net force acting on an object,
Δt = interval of time during which this force acts,
I = moment of Inertia of the object being accelerated,
ω f = final angular velocity of the object at the end of the time interval,
and ω i = initial angular velocity of the object at the beginning of the time interval.

Ok let’s put this in layman’s terms. The longer that I can apply force to something is directly proportional to the angular momentum that I can produce. Since the moment of inertia is a fixed amount, really what impulse is directly affecting is the angular velocity. The longer that I can apply a torque will proportionally increase the angular velocity of the object. That’s why an athlete’s range of motion and technique are so important.

Rate of Force Development (RFD): When it comes to sports outside of powerlifting and strongman, RFD trumps overall ability to produce force. If someone can back squat 227kg/500lb, they are at least producing a little over 2,225N. That’s a lot of force. However, now that we know true rotational power is formed from applying torque over a period of time, we know that only applying that 2,225N of force for a short time isn’t going to produce the angular momentum that we are after. Now if that athlete can recruit the motor units to produce 2,225N of force instantaneously, they have optimal range of motion, and solid technique, then you have a powerhouse.

RFD is King in Weightlifting!

Now if you are an athletic performance coach, I hope you are starting to see that how you train is more important than the exercises chosen. Specificity is key. If you want your athletes improving their rate of force development, velocity and intent are a big part of the equation. There is one more important point that I hope you are starting to understand:

Assessment and Mobility

Assessment is king!

If you are working with a baseball or softball player, you need to assess their scapula movement, shoulder ROM, thoracic spine ROM, hip mobility (especially internal/external rotation and abduction), rate of force development, angular velocity/momentum, and ability to produce overall force. It’s important that you understand how to assess mobility. It’s helpful to have something like GymAware to measure velocity, and force plates to measure force and RFD unilaterally.

You will also need to have a way to measure posture and the strength of his or her decelerators. If an athlete is powerful, mobile, and technically sound and yet hurt all the time, they are of no value to any team. Therefore another key to understand as athletic performance practitioners is this:

Availability is king!

I had a chance to work with Dr. Lawrence Gray, D.C. early in my career – and to date this was the best thing I could have done to improve as a practitioner. Up until this point, I had only focused on performance, mainly my own. He had been my go-to sports medicine doctor during my entire powerlifting career, which led to multiple world records and world championships. Learning assessment and treatment with him is a tool that every athlete I have worked with since has benefitted from. Personally, I wish the strength and conditioning industry would practice an apprenticeship format with part of the career path being time spent with a doctor like Dr. Gray.

Durability and availability will get you on a field of play quicker than any other attribute. The opposite will get you a quick exit from the sport. Rotational sports are riddled with injury. If you want to look like an expert, spend some time understanding deceleration, posture, and correction, then you will immediately be in the top 1% in my experience. That’s why so many high profile athletic performance practitioners seem to be lacking in their ability to increase power and strength. You don’t have to be that good at those things if you can keep athletes healthy and on the field. However, if you can do both, then you become invaluable.

Here are a few simple videos that you can use to start your assessment game:

Flexibility:
https://youtu.be/Ot6Vpu75zAA

Posture:
https://youtu.be/OwsMB1B6-kE (Forward head)
https://youtu.be/fb7gOr0edwM (Shoulder Internal Rotation)
https://youtu.be/tgim4WWeAy0 (Rounded Back aka Kyphosis)
https://youtu.be/mi1dPRlmRoA (Anterior Pelvic Tilt)

Now let’s put a few of these principles to action!

Pitching a Baseball: Why do you think that the majority of pitchers are long and lanky? Remember, Impulse is the ability to produce a force over a period of time. The longer that you can produce a force will lead to greater velocities on the baseball. That’s why the wind up and delivery are so important. Check out this video:
https://www.youtube.com/watch?v=yEpdoAZiHWQ

After watching that video, you will understand my little section on assessment. By the way, my next article is going to be all about assessment, so get ready. The video shows the importance of ROM on impulse and torque. It also shows the importance of force development – and yes, the importance of being strong. Hopefully you are starting to understand the importance of traits like ground contact time, true plyometrics, and velocity. That’s why my relationship with GymAware is so important. (Use Code: ‘MASH5’ to get a 5% discount on either of their products)

STRENGTH UNIVERSITY VIDEO CURRICULUM

THE PERFECT WAY TO GROW IN KNOWLEDGE DURING THIS TIME OF SOCIAL DISTANCING

It's finally here... Learn about technique, programming, assessment, and coaching from a master. For strength coaches and for athletes, these 53 videos (7 hours and 56 minutes of footage) will prepare you to understand the main lifts for maximum performance and safety. Get ready to learn...

Lifting Technique: When it comes to lifting weights, you have to consider the external torque you will be overcoming. You will also need to consider the internal torque your body is capable of producing at the individual joints. When it comes to the external torques on the body, there are three important points to consider:

  • The force produced by the mass of the object you are lifting and gravity
  • The direction of that force which is always vertical in weightlifting and powerlifting
  • The perpendicular distance from that vertical line of force and the axis of rotation of the joint being considered

This is why it’s so important to keep joints resisting the external load as close to the line of action as possible. If you have ever performed a clean or deadlift, then you probably know how much heavier the barbell seems after allowing your butt to fly up faster than your shoulders. This biomechanical mistake in weightlifting or powerlifting increases the demand at the hip and any intervertebral joint of the back. Here’s a video that will clarify: https://youtu.be/2wyAVMt3ng4

Leg Recovery During Sprinting Mechanics: I hear coaches debate sprinting about as often as I hear coaches debate lifting technique in weightlifting. They talk about the start position, use of blocks, shin angle during the acceleration phase, arm action, and so much more. One of the big keys that I believe to be low hanging fruit is action of the leg during the recovery phase. I am talking about what happens when the foot has struck the ground propelling the body through the air, and the active leg has complete hip, ankle, and knee extension behind the body.

Now it’s time to recover the leg and start the process all over again. A major key is to shorten that moment of inertia as much as possible. If you watch the Olympic level sprinters, you will see their foot brush their butt shortening the moment of inertia as much as possible. This action will maximally limit the resistance at the hip, which now we know will increase velocity. During angular momentum, angular velocity is inversely proportional to the moment of inertia meaning the moment of inertia goes up and velocity goes down and vice versa. Here’s an image to further clarify:


Image Courtesy of Spikes Only

I hope that I have made rotational power a bit simpler for all of you. As athletic performance professionals, we really do have the opportunity to make huge impacts if we understand a few principles in biomechanics. If we perfect our abilities to assess, we can find low hanging fruit that can have massive impact with little stress on the body. The key is putting a little time up front understanding these principles – and then like anything else practice, practice, and practice some more. The cool thing is that once you grasp the concept of biomechanics, all of it becomes proportionally easier. It becomes a game much like a puzzle, but this game will lead to gains.

How Strong is Too Strong? – The Barbell Life 342

Driving athletes to peak performance is an art.

Of course we want athletes to be strong, to be fast, to be athletic in every sense of the word.

But dialing in training to achieve all of those goals is not as easy as some may think. How much work strength work should be done in the gym? How much is enough – and how much is TOO much?

How strong is too strong?

Today, we dive into the subject. And instead of just blabbing opinions, get ready to hear some of the science.

ACADEMIC CONCEPTS MEET REAL-WORLD APPLICATION.

Learn the High-Level Muscle Science, Physics, and Biomechanics Principles to Give Your Athletes the Fastest and Safest Progress Possible

All profits go to benefit the Lenoir-Rhyne Weightlifting Team during this unusual and challenging time. Thank you for your support!

LISTEN IN TO TODAY’S PODCAST AS WE TALK ABOUT:

  • How Wake Forest University had tons of hamstring tears (and the greatest athlete Travis ever coached)
  • The WRONG way to address stride length and stride rate
  • Carnivore diet?
  • Power “Development” vs. Power “Expression” – and why that matters
  • The best time to stretch: before or after training? (Hint: neither)
  • and more…

Bar Slamming Drama with Tom Sroka – The Barbell Life 341

If you follow me on social media, you know there was a little bit of controversy recently.

And while I try to be respectful, I’m not afraid to speak my mind.

Well, my good friend Tom Sroka joins us today to go deeper into the recent drama.

Tom was there at the beginning when all of this started with Jon North. And his perspective is worth hearing.

We are here for you during this Coronavirus crisis.

Let us help with customized programming and coaching when you have limited access to gym equipment.

If you are financially able to join our online team for customized programming at this time, we would appreciate your support.

If you are financially struggling during this time, we still want to help. Email us and we will try to help out in any way we can.

* Fully Customized Programming

* Unlimited Technique Analysis

* The Best Coaching in the World

LISTEN IN TO TODAY’S PODCAST AS WE TALK ABOUT:

  • Fist fights with Jon North – and the REAL story behind the bar slam controversy
  • Cringing at old videos of him celebrating
  • Ways to still have competitions during the pandemic
  • Stories about almost dying in the snow
  • Why hasn’t weightlifting caught on in the NCAA?
  • and more…

The Business of Coaching with Matt Reynolds – The Barbell Life 340

In a short amount of time, Matt Reynolds has grown Barbell Logic from a side gig into a thriving and massive business.

Along the way he’s learned about how to coach in a way that gets your clients results – but also in a way that keeps clients as happy and paying customers.

So listen in to this podcast as we discuss some of the keys to his online success. Coaches, listen up!

STRENGTH UNIVERSITY VIDEO CURRICULUM

THE PERFECT WAY TO GROW IN KNOWLEDGE DURING THIS TIME OF SOCIAL DISTANCING

It's finally here... Learn about technique, programming, assessment, and coaching from a master. For strength coaches and for athletes, these 53 videos (7 hours and 56 minutes of footage) will prepare you to understand the main lifts for maximum performance and safety. Get ready to learn...

LISTEN IN TO TODAY’S PODCAST AS WE TALK ABOUT:

  • How to keep online coaching clients for an average of 30 months
  • Why elite athletes are so challenging to coach
  • Adopting powerlifting methodologies to the general population
  • The difference between a LEADER and a BOSS
  • Ensuring client compliance through tons of statistics?
  • and more…
1 2 3 219

FREE E-BOOK:
PR YOUR SQUAT
 TOMORROW

Champion powerlifter and world-class weightlifting coach Travis Mash shares his powerful neural activation technique - proven to instantly increase your strength as well as lead to more long-term gains.

Grab the FREE ebook today to ramp up your strength, athleticism, and muscle gains.

arrow-circle-o-down